4.6 Article

Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility

Journal

MATRIX BIOLOGY
Volume 19, Issue 5, Pages 377-387

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0945-053X(00)00084-6

Keywords

neurite outgrowth; cell migration; RAGE; syndecam; proteoglycans

Ask authors/readers for more resources

Fractionation of proteins from perinatal rat brain was monitored using a neurite outgrowth assay. Two neurite-promoting proteins, HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin) and amphoterin, were isolated, cloned and produced by baculovirus expression for structural and functional studies. HB-GAM is highly expressed in embryonic and early post-natal fiber pathways of the nervous system, and it enhances axonal growth/guidance by binding to N-syndecan (syndecan-3) at the neuron surface. N-syndecan in turn communicates with the cytoskeleton through the cortactin/src-kinase pathway to enhance neurite extension. In addition to N-syndecan, the chondroitin sulfate proteoglycan RPTP beta/zeta (receptor-type tyrosine phosphatase beta/zeta) is implicated in the receptor mechanism of HB-GAM. HB-GAM is also prominently expressed in developing and regenerating bone as a matrix-bound cue for migration of osteoblasts/osteoblast precursors to the site of bone deposition. HB-GAM is suggested to regulate motility in osteoblasts through a similar mechanism as in neurons. Structural studies using heteronuclear :NMR reveal two similar protein domains ire HB-GAM, both consisting of three anti-parallel beta-strands. Search of sequence databases shows that the beta structures of HB-GAM and of the similar domains of MK (midkine) correspond to the thrombospondin type I (TSR) sequence motif. We suggest that the TSR sequence motif, found in several neurite outgrowth-promoting and other cell surface and matrix-binding proteins, defines a beta structure similar to those found in HB-GAM and MK. In general, amphoterin is highly expressed in immature and transformed cells. We suggest a model, according to which amphoterin is an autocrine/paracrine regulator of invasive migration. Amphoterin binds to RAGE (receptor of advanced glycation end products), an immunoglubulin superfamily member related to N-CAM (neural cell adhesion molecule), that communicates with the GTPases Cdc42 and Rac to regulate cell motility. In addition, ligation of RAGE by amphoterin activates NF-kappa B to regulate transcription. (C) 2000 Elsevier Science B.V./International Society of Matrix Biology. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available