4.2 Review

Physiological importance of aquaporins: lessons from knockout mice

Journal

CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION
Volume 9, Issue 5, Pages 517-522

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00041552-200009000-00010

Keywords

-

Ask authors/readers for more resources

The phenotype analysis of transgenic mice deficient in specific aquaporin water channels has provided new insights into the role of aquaporins in organ physiology. AQP1-deficient mice are polyuric and are unable to concentrate their urine in response to water deprivation or vasopressin administration, AQP1 deletion reduces osmotic water permeability in the proximal tubule, thin descending limb of Henle and vasa recta, resulting in defective proximal tubule fluid absorption and medullary countercurrent exchange. Mice lacking AQP3, a basolateral membrane water channel expressed mainly in the cortical collecting duct, are remarkably polyuric but are able to generate a partly concentrated urine after water deprivation. In contrast, mice lacking AQP4, a water channel expressed mainly in the inner medullary collecting duct, manifest only a mild defect in maximum urinary concentrating ability, These data, together with phenotype analyses of the brain, lung, salivary gland, and gastrointestinal organs, support the paradigm that aquaporins can facilitate near-isosmolar transepithelial fluid absorption/secretion as well as rapid vectorial water movement driven by osmotic gradients. The phenotype data obtained from aquaporin knockout mice suggest the utility of aquaporin blockers as novel diuretic agents, Curr Opin Nephrol Hypertens 9:517-522. (C) 2000 Lippincott Williams & Wilkins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available