4.7 Article

Rate-independent crystalline and polycrystalline plasticity, application to FCC materials

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 16, Issue 2, Pages 179-198

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0749-6419(99)00071-6

Keywords

crystal plasticity; polycrystalline material; elastic-plastic material; numerical algorithms

Ask authors/readers for more resources

This paper deals with the simulation of the mechanical response and texture evolution of cubic crystals and polycrystals for a rate-independent elastic-plastic constitutive law. No viscous effects are considered. An algorithm is introduced to treat the difficult case of multi-surface plasticity. This algorithm allows the computation of the mechanical response of a single crystal. The corresponding yield surface is made of the intersection of several hyper-planes in the stress space. The problem of the multiplicity of the slip systems is solved thanks to a pseudo-inversion method. Self and latent hardening are taken into account. In order to compute the response of a polycrystal, a Taylor homogenization scheme is used. The stress-strain response of single crystals and polycrystals is computed for various loading cases. The texture evolution predicted for compression, plane strain compression and simple shear are compared with the results given by a visco-plastic polycrystalline model. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available