4.5 Article

Effect of surface chemistry on the tribological performance of a MEMS electrostatic lateral output motor

Journal

TRIBOLOGY LETTERS
Volume 9, Issue 3-4, Pages 199-209

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/A:1018817123441

Keywords

MEMS tribology; surface chemistry; adsorbed water; self-assembled monolayer; wear

Ask authors/readers for more resources

The effect of surface chemistry on the tribological performance and reliability of a MEMS lateral output motor is reported. Relative humidity (RH) and octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) coatings were used to change surface chemistry. Electrical and tribological performance of uncoated and OTS-coated motors were found to be dependent on RH. For uncoated motors, excessive wear of sliding contacts and welding (permanent adhesion) of static contacts were observed at 0.1% RH. Degradation of electrostatic force and high static friction (stiction) forces limited dynamic performance and reliability and caused device sticking at and above 70% RH. Around 50% RH, uncoated motors exhibited negligible wear, low adhesion, and a wear life at least three orders of magnitude longer than in the dry environment (experiments were stopped without failure after about one billion cycles). Water vapor behaved as a gas phase replenishable lubricant by providing a protective adsorbed film. The OTS coating broadened the operating envelope to 30-50% RH and reduced stiction. which allowed better dynamic performance at high RH. The OTS coating improved durability at 0.1% RH, but it was still poor. At high RH, stiction problems reoccurred when the OTS coating was worn away. By controlling and balancing surface chemistry (adsorbed water and OTS), excellent performance, low friction and wear, and excellent durability were attained with the lateral output motor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available