4.2 Article

Numerical and experimental uniaxial loading on in-plane auxetic honeycombs

Journal

JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN
Volume 35, Issue 5, Pages 383-388

Publisher

PROFESSIONAL ENGINEERING PUBLISHING LTD
DOI: 10.1243/0309324001514152

Keywords

auxetic; Poisson's ratio; honeycomb; mechanical properties; finite element method; image data detection

Ask authors/readers for more resources

Auxetic honeycombs show in-plane negative Poisson's ratio properties; they expand in all directions when pulled in only one, and contract when compressed. This characteristic is due to the re-entrant shape of the honeycomb unit cell. The cell convoluteness gives a geometric stiffening effect that affects the linear elastic properties of the whole cellular solid. In this paper finite element simulations are carried out to calculate the in-plane Poisson's ratio and Young's moduli of re-entrant cell honeycombs for different geometric layout combinations (side cell aspect ratio, relative thickness and internal cell angle) subjected to uniaxial loading. The results show a high sensitivity of the mechanical properties for particular ranges of the geometric cell parameters. An image data detection technique is used to extract displacements and strains from an aramid paper re-entrant honeycomb sample in a tensile test. The comparison between numerical and experimental results shows good agreement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available