4.6 Article

Leaves as shell structures: Double curvature, auto-stresses, and minimal mechanical energy constraints on leaf rolling in grasses

Journal

JOURNAL OF PLANT GROWTH REGULATION
Volume 19, Issue 1, Pages 19-30

Publisher

SPRINGER VERLAG
DOI: 10.1007/s003440000004

Keywords

biomechanics; biophysics; leaf rolling; grasses; poacae

Categories

Ask authors/readers for more resources

Grass leaves are natural examples of shell structures because they are thin and display a double curvature. An important mechanical property of shells is that changes in longitudinal and transverse curvatures are not independent. The basis of this mechanical coupling is presented using simple diagrams. The relevance of the structural constraints for the processes of hydronastic rolling and developmental unrolling in grass leaves is then reviewed. I show that mechanical constraints can explain a large part of the genetic and developmental variability of hydronastic rolling in grasses, without reference to specific anatomic features such as bulliform cells. Mechanical analysis of a rolled maize mutant also revealed that developmental unrolling is not limited to a pure transverse expansion of hinge cells and involves both longitudinal and transverse dimensional changes in the upper epidermis. Interest in using mechanical models as a tool to reveal structural interactions at the tissue and organ level is discussed, and the importance of Paul Green's biophysical approach to the study of plant morphogenesis is emphasized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available