3.8 Article

Carbonic anhydrase inhibitors: Synthesis of sulfonamides incorporating 2,4,6-trisubstituted-pyridinium-ethylcarboxamido moieties possessing membrane-impermeability and in vivo selectivity for the membrane-bound (CA IV) versus the cytosolic (CA I and CA II) isozymes

Journal

JOURNAL OF ENZYME INHIBITION
Volume 15, Issue 4, Pages 381-401

Publisher

HARWOOD ACAD PUBL GMBH, TAYLOR & FRANCIS GROUP
DOI: 10.1080/14756360009040695

Keywords

carbonic anhydrase; isozymes I, II, IV; sulfonamide; pyrylium salt; pyridinium salt; bicarbonate excretion

Ask authors/readers for more resources

A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisubstituted-pyridinium-ethylcarboxy moieties (obtained from 2,4,6-trisubstituted-pyrylium salts and beta-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition tin the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available