4.5 Article

The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of the indirect flight muscle

Journal

BIOPHYSICAL JOURNAL
Volume 78, Issue 3, Pages 1431-1440

Publisher

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(00)76696-3

Keywords

-

Categories

Ask authors/readers for more resources

The Drosophila myosin regulatory light chain (DMLC2) is homologous to MLC2s of vertebrate organisms, except for the presence of a unique 46-amino acid N-terminal extension. TO study the role of the DMLC2 N-terminal extension in Drosophila flight muscle, we constructed a truncated form of the Dmlc2 gene lacking amino acids 2-46 (Dmlc2(Delta 2-46)). The mutant gene was expressed in vivo, with no wild-type Dmlc2 gene expression, via P-element-mediated germline transformation. Expression of the truncated DMLC2 rescues the recessive lethality and dominant flightless phenotype of the Dmlc2 null, with no discernible effect on indirect flight muscle (IFM) sacromere assembly. Homozygous Dmlc2(Delta 2-46) flies have reduced IFM dynamic stiffness and elastic modulus at the frequency of maximum power output. The viscous modulus, a measure of the fly's ability to perform oscillatory work, was not significantly affected in Dmlc2(Delta 2-46) IFM. In vivo flight performance measurements of DmlC2(Delta 2-46) flies using a visual dosed-loop flight arena show deficits in maximum metabolic power (P-CO2*), mechanical power (P-mech*), and flight force. However, mutant flies were capable of generating flight force levels comparable to body weight, thus enabling them to fly, albeit with diminished performance. The reduction in elastic modulus in Dmlc2(Delta 2-46) skinned fibers is consistent with the N-terminal extension being a link between the thick and thin filaments that is parallel to the cross-bridges. Removal of this parallel link causes an unfavorable shift in the resonant properties of the flight system, thus leading to attenuated flight performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available