4.6 Article

Magnetic relaxation in a classical spin chain

Journal

PHYSICAL REVIEW B
Volume 61, Issue 10, Pages 6734-6740

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.61.6734

Keywords

-

Ask authors/readers for more resources

With decreasing particle size, different mechanisms dominate the thermally activated magnetization reversal in ferromagnetic particles. We investigate some of these mechanisms for the case of a classical Heisenberg spin chain driven by an external magnetic field. For sufficiently small system size the magnetic moments rotate coherently. With increasing size a crossover to a reversal due to soliton-antisoliton nucleation sets in. For even larger systems many of these soliton-antisoliton pairs nucleate at the same time. These effects give rise to a complex size dependence of the energy barriers and characteristic time scales of the relaxation. We study these quantities using Monte Carlo simulations as well as a direct integration of the Landau-Lifshitz-Gilbert equation of motion with Langevin dynamics and we compare our results with asymptotic solutions for the escape rate following from the Fokker-Planck equation. Also, we investigate the crossover from coherent rotation to soliton-antisoliton nucleation and multidroplet nucleation, especially its dependence on the system size, the external field, and the anisotropy of the system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available