4.7 Article

Quantification of periapical bone destruction in mice by micro-computed tomography

Journal

JOURNAL OF DENTAL RESEARCH
Volume 79, Issue 1, Pages 35-40

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/00220345000790010401

Keywords

micro-computed tomography; bone resorption; periapical lesion

Funding

  1. NIA NIH HHS [AG-13333] Funding Source: Medline
  2. NIDCR NIH HHS [DE-09018, DE-11664] Funding Source: Medline
  3. NATIONAL INSTITUTE OF DENTAL &CRANIOFACIAL RESEARCH [R01DE011664, R01DE009018] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE ON AGING [R01AG013333] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Bacterial infections of the dental pulp result in tissue destruction and periapical bone resorption. The availability of genetically engineered mouse strains is a major advantage in the use of this model system for studies of periapical pathogenesis. The main limitation of the mouse model is its small size, and the necessity for laborious histologic analyses to quantify periapical bone destruction. In the present study, we evaluated the use of a new technology, high-resolution micro-computed tomography (micro-CT), for the rapid and non-invasive quantification of periapical bone destruction. Periapical lesions were induced in the lower first molars of mice by exposing the pulp to the oral environment. Mandibles were harvested on day 21 after pulp exposure, and were subjected to micro-CT analysis, with 17-mu m-thick radiographic sections. Samples were then decalcified, embedded, and sectioned for histolology. The cross-sectional area of periapical lesions was determined by image analysis of corresponding micro-CT and histologic sections. The results showed a highly significant correlation between micro-CT and histology (p < 0.0001), with mean differences of 4.1% (range, 0.9 to 7.2%) between the two methods. The mean error associated with image analysis was 4.9% for images obtained by both micro-CT and histology. The variability of replicate (n = 5) independent micro-CT determinations was 3.4%, less than that associated with the image analysis error. These results demonstrate that micro-CT imaging is a rapid, reproducible, and non-invasive method, that gives results that an closely comparable with those obtained by histology. Micro-CT appears to have utility for the accurate quantification of changes in bone architecture in small biological specimens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available