4.7 Review

Electrochemistry at carbon nanotubes: perspective and issues

Journal

CHEMICAL COMMUNICATIONS
Volume -, Issue 45, Pages 6886-6901

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b909734a

Keywords

-

Ask authors/readers for more resources

Electrochemistry at carbon nanotubes (CNTs) is a large and growing field, but one in which there is still uncertainty about the fundamental activity of CNTs as electrode materials. On the one hand, there are many reports which focus on the favourable electrochemical properties of CNT electrodes, such as enhanced detection sensitivity, electrocatalytic effects and reduced fouling. On the other hand, other studies suggest that CNTs may be no more electroactive than graphitic powder. Furthermore, it has been proposed that the catalytic nanoparticles from which CNTs are formed may dominate the electrochemical characteristics in some instances. A considerable body of the literature presumes that the CNT sidewall is inert and that edge-plane-graphite-like open ends and defect sites are responsible for the electron transfer activity observed. In contrast, studies of well characterised single-walled nanotube (SWNT) electrodes, either as individual tubes or as two-dimensional networks, suggest sidewall activity. This review highlights how the various discrepancies in CNT electrochemistry may have arisen, by taking a historical view of the field and identifying crucial issues that still need to be solved. When assessing the behaviour of CNT electrodes, it is vitally important that careful consideration is given to the type of CNT used (SWNT or multi-walled), the quality of the material (presence of impurities), the effect of chemical processing steps in the fabrication of electrodes and the experimental arrangements adopted. Understanding these key features is an essential requirement to develop a fundamental understanding of CNT electrochemistry, to allow a wide range of electroanalytical applications, and to move the field forward rationally. As part of this process, high resolution electrochemical and electrical imaging techniques are expected to play a significant role in the future, as well as theoretical developments which examine the fundamentals of electron transfer at different types of CNTs and their characteristic surface sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available