4.6 Article

Infinite-randomness quantum Ising critical fixed points

Journal

PHYSICAL REVIEW B
Volume 61, Issue 2, Pages 1160-1172

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.61.1160

Keywords

-

Ask authors/readers for more resources

We examine the ground state of the random quantum Ising model in a transverse field using a generalization of the Ma-Dasgupta-Hu renormalization group (RG) scheme. For spatial dimensionality d=2, we find that at strong randomness the RG flow for the quantum critical point is towards an infinite-randomness fixed point, as in one dimension. This is consistent with the results of a recent quantum Monte Carlo study by Pich et at. [Phys. Rev. Lett. 81, 5916 (1998)], including estimates of the critical exponents from our RG that agree well with those from the quantum Monte Carlo. The same qualitative behavior appears to occur for three dimensions; we have not yet been able to determine whether or not it persists to arbitrarily high d. Some consequences of the infinite-randomness fixed point for the quantum critical scaling behavior are discussed. Because frustration is irrelevant in the infinite-randomness limit, the same fixed point should govern both ferromagnetic and spin-glass quantum critical points. This RG maps the random quantum Ising model with strong disorder onto a novel type of percolation/aggregation process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available