4.7 Review

Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications

Journal

CHEMICAL COMMUNICATIONS
Volume -, Issue 33, Pages 4913-4928

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b905753f

Keywords

-

Funding

  1. National Science Foundation
  2. American Chemical Society
  3. Ministry of Education, Science, Sport and Culture of Japan

Ask authors/readers for more resources

Since the three-dimensional electron-accepting fullerene has been found to be an excellent building block for self-assembled supramolecular systems, we have investigated photoinduced electron transfer processes in supramolecular fullerene systems with porphyrins and phthalocyanines as electron donors to mimic natural photosynthesis. We have successfully formed self-assembled supramolecular dyads and triads via metal-ligand coordination, crown-ether inclusion, ion pairing, hydrogen-bonding, or pi-pi stacking interactions. Although the single mode of binding gives usually flexible supramolecular structures, the newly developed strategy of multiple modes of binding results in conjugates of defined distance and orientation between the donor and acceptor entities, which influences the overall electron transfer reactions. In these conjugates, we observe the anticipated acceleration of the charge separation process and deceleration of the charge recombination process. Applications of these supramolecular systems for reversible photoswitching of inter- and intramolecular electron transfer events open up new opportunities in the area of photosensors. Extension of the self-assembly approaches to single wall carbon nanotubes (SWNT) results in SWNT-porphyrin/phthalocyanine nanohybrids capable of undergoing photoinduced electron transfer. These photochemical processes lead to photocatalytic reactions accumulating redox active substances of electron acceptor/mediator entities with the help of a sacrificial electron donor. Studies on these self-assembled supramolecular dyads, triads, tetrads, etc., are only in the beginning stages and future studies anticipate involvement of more complex systems targeted for better performances in light-driven devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available