4.4 Article

Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 11, Issue 9, Pages 3219-3232

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.11.9.3219

Keywords

-

Categories

Funding

  1. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R37DK017724, R01DK017724] Funding Source: NIH RePORTER
  2. NIDDK NIH HHS [R37 DK017724, R01 DK017724, DK17724] Funding Source: Medline

Ask authors/readers for more resources

Podocalyxin is a major membrane protein of the glomerular epithelium and is thought to be involved in maintenance of the architecture of the foot processes and filtration slits characteristic of this unique epithelium by virtue of its high negative charge. However, until now there has been no direct evidence for podocalyxin's function. Podocalyxin is a type 1 transmembrane sialoprotein with an N-terminal mucin-like domain. To assess its function, rue cloned rat podocalyxin and examined the effects of its expression on the cell adhesion properties of stably transfected Chinese hamster ovary (CHO)-K1 and Madin-Darby canine kidney (MDCK) cells and inducible ecdysone receptor-expressing (EcR)-CHO cells. In a cell aggregation assay, CHO-K1 cells expressing high levels of podocalyxin showed complete inhibition of cell aggregation, and MDCK transfectants showed greatly reduced aggregation (similar to 60-80%) compared with parental cells. In EcR-CHO cells, the expression level of podocalyxin induced by increasing levels of ecdysone analogue correlated closely with the antiadhesion effect. The inhibitory effect of podocalyxin was reversed by treatment of the cells with Arthrobacter ureafaciens sialidase, indicating that sialic acid is required for inhibition of cell adhesion. Overexpression of podocalyxin also affected transepithelial resistance and the distribution of junctional proteins in MDCK cells by an unknown mechanism that may involve interaction with the actin cytoskeleton. These results provide direct evidence that podocalyxin functions as an antiadhesin that maintains an open filtration pathway between neighboring foot processes in the glomerular epithelium by charge repulsion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available