4.5 Article

Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 75, Issue 3, Pages 965-972

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1046/j.1471-4159.2000.0750965.x

Keywords

microglia; tumor necrosis factor-alpha; ATP; P2X(7) receptor; Ca2+; mitogen-activated protein kinase

Ask authors/readers for more resources

Brain microglia are a major source of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), which have been implicated in the progression of neurodegenerative diseases. Recently, microglia were revealed to be highly responsive to ATP, which is released from nerve terminals, activated immune cells, or damaged cells. It is not clear, however, whether released ATP can regulate TNF-alpha secretion from microglia. Here we demonstrate that ATP potently stimulates TNF-alpha release, resulting from TNF-alpha mRNA expression in rat cultured brain microglia, The TNF-alpha release was maximally elicited by 1 mM ATP and also induced by a P2X(7) receptor-selective agonist, 2'- and 3'-O-(4-benzoylbenzoyl)adenosine S'-triphosphate, suggesting the involvement of P2X(7) receptor. ATP-induced TNF-alpha release was Ca2+-dependent, and a sustained Ca2+ influx correlated with the TNF-alpha release in ATP-stimulated microglia, ATP-induced TNF-alpha release was inhibited by PD 098059, an inhibitor of extracellular signal-regulated protein kinase (ERK) kinase 1 (MEK1), which activates ERK, and also by SE 203580, an inhibitor of p38 mitogen-activated protein kinase, ATP rapidly activated both ERK and p38 even in the absence of extracellular Ca2+. These results indicate that extracellular ATP triggers TNF-alpha release in rat microglia via a P2 receptor, likely to be the P2X(7) subtype, by a mechanism that is dependent on both the sustained Ca2+ influx and ERK/p38 cascade, regulated independently of Ca2+ influx.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available