4.7 Article

The 1.0 angstrom crystal structure of Ca2+-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 301, Issue 5, Pages 1237-1256

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jmbi.2000.4029

Keywords

calmodulin; X-ray crystallography; Paramecium tetraurelia; disorder; atomic resolution

Ask authors/readers for more resources

Calmodulin (CaM) is a highly conserved 17 kDa eukaryotic protein that can bind specifically to over 100 protein targets in response to a Ca2+ signal. Ca2+-CaM requires a considerable degree of structural plasticity to accomplish this physiological role; however, the nature and extent of this plasticity remain poorly characterized. Here, we present the 1.0 Angstrom crystal structure of Paramecium tetraurelia Ca2+-CaM, including 36 discretely disordered residues and a fifth Ca2+ that mediates a crystal contact. The 36 discretely disordered residues are located primarily in the central helix and the two hydrophobic binding pockets, and reveal correlated sidechain disorder that may assist target-specific deformation of the binding pockets. Evidence of domain displacements and discrete backbone disorder is provided by translation-libration-screw (TLS) analysis and multiconformer models of protein disorder, respectively. In total, the evidence for disorder at every accessible length-scale in Ca2+-CaM suggests that the protein occupies a large number of hierarchically arranged conformational substates in the crystalline environment and may sample a quasi-continuous spectrum of conformations in solution. Therefore, we propose that the functionally distinct forms of CaM are less structurally distinct than previously believed, and that the different activities of CaM in response to Ca2+ may result primarily from Ca2+-mediated alterations in the dynamics of the protein. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available