4.4 Article

Reversible binding of antidiabetic drugs, repaglinide and gliclazide, with human serum albumin

Journal

CHEMICAL BIOLOGY & DRUG DESIGN
Volume 72, Issue 4, Pages 290-296

Publisher

WILEY
DOI: 10.1111/j.1747-0285.2008.00704.x

Keywords

binding; fluorescence; gliclazide; human serum albumin; repaglinide

Ask authors/readers for more resources

Mechanism of interaction of antidiabetic drugs, repaglinide and gliclazide, to human serum albumin has been studied using fluorescence spectroscopic technique. Repaglinide had much higher affinity for human serum albumin when compared with gliclazide. The order of association constants was 10(5) for both the drugs. The size, hydrophobicity and flexibility of the drug molecules play a major role in explaining the binding behaviour of these drugs. Hydrophobic interactions are predominantly involved in the binding. However, drugs do not share common sites with 1-anilinonaphthalene-8-sulphonate on the human serum albumin molecule. Both tyrosine and tryptophan residues participate in the interaction. Repaglinide and gliclazide are bound to site II on the human serum albumin molecule, and the aromatic ring of (411)Tyr appears to be involved in binding within site II. Although they do not bind at site I, their binding at site II may cause conformational changes thereby affecting the binding of other ligands to site I. Site-specificity can be useful in predicting the competitive displacement of these drugs by other co-administered drugs, resulting in fluctuations of the blood glucose levels in diabetic patients. Stern-Volmer analysis of quenching data indicated that the tryptophan residues are not fully accessible to the drugs and predominantly dynamic quenching mechanism is involved in the binding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available