3.8 Article

Expression in yeast and tobacco of plant cDNAs encoding acyl CoA : diacylglycerol acyltransferase

Journal

EUROPEAN JOURNAL OF BIOCHEMISTRY
Volume 267, Issue 1, Pages 85-96

Publisher

WILEY
DOI: 10.1046/j.1432-1327.2000.00961.x

Keywords

expression in yeast; floating lipid layer; plant diacylglycerol acyltransferase; triacylglycerol synthesis; transgenic tobacco

Ask authors/readers for more resources

During the course of a search for cDNAs encoding plant sterol acyltransferases, an expressed sequence tag clone presenting substantial identity with yeast and animal acyl CoA:cholesterol acyltransferases was used to screen cDNA libraries from Arabidopsis and tobacco. This resulted in the isolation of two full-length cDNAs encoding proteins of 520 and 532 amino acids, respectively. Attempts to complement the yeast double-mutant are1 are2 defective in acyl CoA:cholesterol acyltransferase were unsuccessful, showing that neither gene encodes acyl CoA:cholesterol acyltransferase. Their deduced amino acid sequences were then shown to have 40 and 38% identity, respectively, with a murine acyl CoA:diacylglycerol acyltransferase and their expression in are1 are2 or wild-type yeast resulted in a strong increase in the incorporation of oleyl CoA into triacylglycerols. Incorporation was 2-3 times higher in microsomes from yeast transformed with these plant cDNAs than in yeast transformed with the void vector, clearly showing that these cDNAs encode acyl CoA:diacylglycerol acyltransferases. Moreover, during the preparation of microsomes from the Arabidopsis DGAT-transformed yeast, a floating layer was observed on top of the 100 000 g supernatant. This fraction was enriched in triacylglycerols and exhibited strong acyl CoA:diacylglycerol acyltransferase activity, whereas almost no activity was detected in the corresponding clear fraction from the control yeast. Thanks to the use of this active fraction and dihexanoylglycerol as a substrate, the de novo synthesis of 1,2-dihexanoyl 3-oleyl glycerol by AtDGAT could be demonstrated. Transformation of tobacco with AtDGAT was also performed. Analysis of 19 primary transformants allowed detection, in several individuals, of a marked increase (up to seven times) of triacylglycerol content which correlated with the AtDGAT mRNA expression. Furthermore, light-microscopy observations of leaf epidermis cells, stained with a lipid-specific dye, showed the presence of lipid droplets in the cells of triacylglycerol-overproducer plants, thus illustrating the potential application of acyl CoA:diacylglycerol acyltransferase-transformed plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available