4.6 Article

Lipopolysaccharide-binding protein-mediated interaction of lipid A from different origin with phospholipid membranes

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 2, Issue 20, Pages 4521-4528

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b004188m

Keywords

-

Ask authors/readers for more resources

Investigations are reported into the interaction of lipid A, the 'endotoxic principle' of bacterial lipopolysaccharide (LPS), with phospholipid membranes in the absence and presence of an acute-phase lipid transport protein, lipopolysaccharide-binding protein (LBP) applying Fourier-transform infrared (FTIR) and fluorescence resonance energy transfer (FRET) spectroscopy. In the absence of LBP, intermixing of phospholipids with lipid A takes place on the time-scale of hours, while in the presence of LBP this process takes place in the order of minutes. A comparison of chemically different lipid A shows that a prerequisite for the intercalation of lipid A into the phospholipid membrane is a sufficiently high negative charge density of lipid A. Variations in the lipid A acyl chain fluidity may modulate the intercalation, whereas the type of lipid A aggregate structure has no influence on the intercalation.The intercalation is a necessary, but not sufficient prerequisite for cell activation. Only lipid A with a conical molecular shape and a tilt angle of more than 40 degrees of the backbone with respect to the direction of the acyl chains induces cytokine induction in human mononuclear cells, while lipid A with a cylindrical shape and a small tilt angle does not exhibit this biological activity but may act antagonistically. This antagonistic effect may be explained by blocking of the binding-sites of the putative signal-transducing protein, possibly an ion channel, by the antagonist.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available