4.6 Article

Strengthening mechanisms in a rapidly solidified and aged Cu-Cr alloy

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 35, Issue 7, Pages 1691-1694

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1004760014886

Keywords

-

Ask authors/readers for more resources

A single-roller melt spinning method was used to produce Cu-Cr microcrystal alloy ribbons. Upon proper aging treatment, the strength and hardness of the alloy were remarkably enhanced while the conductivity only had a minimal decrease. Grain refinement and coherent dispersion strengthening were proved to be the major factors contributing to the improvement of strength and hardness of the alloy after aging. The degree of coherent strengthening was almost identical with that calculated by the Gerold equation. Compared with the solid solution quenched Cu-Cr alloy, the peak hardness was increased 2.6 times, in which about 27% was attributed to the grain refinement and 73%, in turn, provided by coherent strengthening due to aging precipitation. Neither the solid solution strengthening nor vacancy strengthening had detectable effect on the strength and hardness of the rapidly solidified Cu-Cr alloy. (C) 2000 Kluwer Academic Publishers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available