4.3 Review

Development of Chiral Thiourea Catalysts and Its Application to Asymmetric Catalytic Reactions

Journal

CHEMICAL & PHARMACEUTICAL BULLETIN
Volume 58, Issue 5, Pages 593-601

Publisher

PHARMACEUTICAL SOC JAPAN
DOI: 10.1248/cpb.58.593

Keywords

organocatalyst; asymmetric reaction; thiourea; hydrogen bond; Michael addition; dual activation

Funding

  1. MEXT [19020027]
  2. JSPS KAKENHI [19390005]

Ask authors/readers for more resources

We have developed several multifunctional thiourea catalysts bearing a tertiary amine or an 1,2-amino alcohol in expectation of their synchronous activation of a nucleophile and an electrophile through both acid-base and hydrogen-bonding interactions. From these studies, it was revealed that the weak acidity of thioureas compared with metallic Lewis acids could be overcome by this modification. The bifunctional aminothiourea could be used efficiently for a wide range of diastereoselective and enantioselective nucleophilic reactions such as Michael addition of 1,3-dicarbonyl compounds to nitrooletines, aza-Henry reaction of nitroalkanes to N-Boc imines, and hydrazination of cyclic beta-keto esters. We also discovered that multifunctional thiourea catalyst, bearing an 1,2-amino alcohol moiety, significantly accelerated the Petasis-type reaction of alkenylboronic acids to N-phenoxycarbonyl quinolinium salts, prepared from quinolines and phenyl chloroformate, to afford 1,2-addition products with high enantioselectivity (up to 97% ee). Furthermore, to expand the synthetic applicability of the thiourea-catalyzed asymmetric reactions, tandem organocatalyzed reactions were explored to establish the concise one-pot synthesis of chiral densely functionalized three-, five-, and six-membered compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available