4.4 Article

Surface and microstructural properties of SnO2 thin films grown on p-InP (100) substrates at low temperature

Journal

SOLID STATE COMMUNICATIONS
Volume 115, Issue 9, Pages 503-507

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0038-1098(00)00231-3

Keywords

heterojunctions; crystal growth; scanning and transmission electron microscopy

Ask authors/readers for more resources

SnO2 thin films were grown on p-InP (100) substrates by using radio-frequency magnetron sputtering at low temperature. Atomic force microscopy images showed that the root mean square of the average surface roughness of the SnO2 film was 22.6 Angstrom, and X-ray diffraction and transmission electron microscopy (TEM) measurements showed that the SnO2 thin films grown on p-InP substrates were polycrystalline. Auger electron spectroscopy and bright-field TEM measurements showed that the SnO2 thin layers grown on p-InP substrates at 200 degrees C had no significant interdiffusion problems. However, a thin interfacial layer of unknown origin was detected between the SnO2 film and the substrate. These results indicate that the SnO2 epitaxial films grown on p-InP (100) substrates at low temperature hold promise for potential devices based on InP substrates, such as superior stability varistors and high-efficiency solar cells. Even the structure with the unintentionally grown interfacial layer might be used for high-efficiency solar cells. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available