4.7 Article

Satellite cell proliferation in low frequency-stimulated fast muscle of hypothyroid rat

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 279, Issue 3, Pages C682-C690

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.2000.279.3.C682

Keywords

chronic low-frequency stimulation; muscle fiber transformation; myogenin; myosin heavy chain isoforms

Ask authors/readers for more resources

Satellite cell proliferation was assessed in low-frequency-stimulated hypothyroid rat fast-twitch muscle by 5-bromo-2'-deoxyuridine (BrdU) labeling and subsequent staining of labeled muscle nuclei, and by staining for proliferating cell nuclear antigen (PCNA). BrdU labeling and PCNA staining were highly correlated and increased approximately fourfold at 5 days of stimulation, decayed thereafter, but remained elevated over control in 10- and 20-day stimulated muscles. Myogenin mRNA was similar to 4-fold elevated at 5 days and 1.5-fold at 10 days. Staining for myogenin protein yielded results similar to that for PCNA and BrdU. Furthermore, a detailed examination of the pattern of myogenin staining revealed that the number of myogenin-positive nuclei was elevated in the fast pure IIB fiber population at 5 and 10 days of chronic low-frequency stimulation. By 20 days, myogenin staining was observed in transforming fast fibers that coexpressed embryonic and adult myosin heavy chain isoforms. In the slower fiber populations (i.e., IIA and I), myogenin-positive transforming fibers that coexpressed embryonic myosin heavy chain, appeared already at 5 days. Thus the satellite cell progeny on slower fibers seemed to proliferate less and to fuse earlier to their associated fibers than the satellite cell progeny on fast fibers. We suggest that the increase in muscle nuclei of the fast fibers might be a prerequisite for fast-to-slow fiber type transitions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available