4.2 Article

Pathological and experimentally induced blindness induces auditory activity in the cat primary visual cortex

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 131, Issue 1, Pages 144-148

Publisher

SPRINGER VERLAG
DOI: 10.1007/s002219900295

Keywords

cross-modal neuroplasticity; enucleation; visual deprivation; auditory activation; hydrocephalus; Walker-Warburg syndrome

Categories

Ask authors/readers for more resources

Early blindness in humans and experimental visual deprivation in animal models are known to induce compensatory somatosensory and/or auditory activation of the visual cortex. An abnormal hydrocephalic cat with extreme malformation of the visual system, born in our breeding colony, rendered a good model system for investigating possible cross-modal compensation in such a pathological case. For comparison, we used nor mal and neonatally enucleated cats. When introduced to a novel environment, the abnormal cat behaved as if it was completely blind, yet it responded normally to auditory stimuli. As anticipated, single cells in the visual cortex of normal cats responded to visual, but not to auditory stimuli. In the visual cortex of enucleated cats, flashes of light did not elicit field-evoked potentials or single-unit responses. However, several cells did respond to various auditory stimuli. In the remnant visual cortex of the abnormal cat, auditory stimuli evoked field potentials and single-cell responses. Unexpectedly, however, unlike the enucleated cats, in the abnormal cat, flashes of light also elicited field-evoked potentials. Judging by its behavior, it is very likely that this deformed cat had completely lost its ability to perceive images, but had probably retained some sensitivity to light.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available