4.7 Article Proceedings Paper

A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation

Journal

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Volume 182, Issue 3-4, Pages 355-370

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/S0045-7825(99)00198-X

Keywords

-

Ask authors/readers for more resources

A stabilized finite element formulation for incompressible viscous flows is derived. The starting point are the modified Navier-Stokes equations incorporating naturally the necessary stabilization terms via a finite increment calculus (FIC) procedure. Application of the standard finite element Galerkin method to the modified differential equations leads to a stabilized discrete system of equations overcoming the numerical instabilities emanating from the advective terms and those due to the lack of compatibility between approximate velocity and pressure fields. The FIC method also provides a natural explanation for the stabilization terms appearing in all equations for both the Navier-Stokes and the simpler Stokes equations. Transient solution schemes with enhanced stabilization properties are also proposed. Finally a procedure for computing the stabilization parameters is presented. (C) 2000 Elsevier Science S.A. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available