4.5 Article

The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis

Journal

MEDICAL HYPOTHESES
Volume 55, Issue 3, Pages 239-241

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1054/mehy.2000.1051

Keywords

-

Ask authors/readers for more resources

Multiple sclerosis (MS) has a much higher incidence among caucasians that in any other race. Furthermore: females are much more susceptible than males and white females living in colder, wetter areas are much more susceptible than those living in warmer areas. On the other hand, menstruating women have increased copper (Cu) absorption and half-life, so they tend to accumulate more Cu than males. Moreover, rapidly growing girls have an increased demand for zinc (Zn), but their rapidly decreasing production of melatonin results in impaired Zn absorption, which is exacerbated by the high Cu levels. The low Zn levels result in deficient CuZnSuperoxide dismutase (CuZnSOD), which in turn leads to increased levels of superoxide. Menstruating females also often present with low magnesium (Mg) and vitamin B6 levels. Vitamin B6 moderates intracellular nitric oxide (NO) production and extracellular Mg is required for NO release from the cell, so that a deficiency of these nutrients results in increased NO production in the cell and reduced release from the cell. The trapped NO combines with superoxide to form peroxinitrite, an extremely powerful free radical that leads to the myelin damage of MS. Iron (Fe), molybdenum (Mo) and cadmium (Cd) accumulation also increase superoxide production. Which explains MS in males, who tend to accumulate Fe much faster and Cu much less rapidly than females. Since vitamin D is paramount for Mg absorption, the much reduced exposure to sunlight in the higher latitudes may account for the higher incidence in these areas. Moreover, vitamin B2 is a cofactor for xanthine oxidase, and its deficiency exacerbates the low levels of uric acid caused by high Cu levels, resulting in myelin degeneration. Finally Selenium (Se) and vitamin E prevent lipid peroxidation and EPA and DHA upregulate CuZnSOD. Therefore, supplementation with 100 mg MG, 25 mg vit B6, 10 mg vit B2, 15 mg Zn and 400 IU vit D and E, 100 mu g Se, 180 mg EPA and 120 mg DHA per day between 14 and 16 years of age may prevent MS. (C) 2000 Harcourt Publishers Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available