4.5 Article

The capacity of wireless networks

Journal

IEEE TRANSACTIONS ON INFORMATION THEORY
Volume 46, Issue 2, Pages 388-404

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/18.825799

Keywords

ad hoc networks; capacity; multihop radio networks; throughput; wireless networks

Ask authors/readers for more resources

When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput lambda(n) obtainable by each node for a randomly chosen destination is Theta (W/root n log n) bits per second under a noninterference protocol. If the nodes are optimally placed in a disk of unit area, traffic patterns are optimally assigned, and each transmission's range is optimally chosen, the bit-distance product that can be transported by the network per second is Theta(W root An) bit-meters per second. Thus even under optimal circumstances, the throughput is only Theta(W/root n) bits per second for each node for a destination nonvanishingly far away, Similar results also hold under an alternate physical model where a required signal-to-interference ratio is specified for successful receptions. Fundamentally, it is the need for every node all over the domain to share whatever portion of the channel it is utilizing with nodes in its local neighborhood that is the reason for the constriction in capacity, Splitting the channel into several subchannels does not change any of the results. Some implications may be worth considering by designers. Since the throughput furnished to each user diminishes to zero as the number of users is increased, perhaps networks connecting smaller numbers of users, or featuring connections mostly with nearby neighbors, may be more likely to be find acceptance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available