4.7 Article

Forces on a Rayleigh particle in the cover region of a planar waveguide

Journal

JOURNAL OF LIGHTWAVE TECHNOLOGY
Volume 18, Issue 3, Pages 388-400

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/50.827512

Keywords

chemical sensor; optical forces; optical planar waveguide; optical trapping; Rayleigh particles

Ask authors/readers for more resources

We report on the optimization of a waveguide structure for the maximization of the radiation forces exerted on a Rayleigh particle in the cover region. The two main radiation forces involved are the transverse gradient force which attracts a particle into the waveguide and the combined scattering and dissipative forces which drive the particle forward along the channel. The dependence of these forces on parameters including the incident wavelength, the surrounding medium embedding the particles, and the polarizability of the particles is discussed. Both dielectric and metallic gold spheres of radius 10 nm are considered in the model. Special emphasis is devoted to the maximization of the transverse gradient force due to the optical intensity gradient at the waveguide surface, and the wavelength dependence of the polarizability of gold nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available