4.5 Article

Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in ZnHZSM-5 zeolite prepared by incipient wetness impregnation

Journal

CATALYSIS LETTERS
Volume 66, Issue 1-2, Pages 39-47

Publisher

BALTZER SCI PUBL BV
DOI: 10.1023/A:1019031119325

Keywords

ZnHZSM-5 zeolites; DRIFT spectra of adsorbed dihydrogen; dissociative adsorption; nanometric ZnO clusters

Ask authors/readers for more resources

A DRIFT study of ZnHZSM-5 zeolites with Si/Al ratios of 15 or 41 and a Zn loading of 0.8 wt% revealed a high thermal stability of bridging OH groups that was practically the same as in the pure hydrogen forms. It was concluded that the incipient wetness impregnation of NH(4)ZSM-5 zeolite with zinc nitrate and the subsequent high-temperature treatment results only in a minor amount of ion exchange. A considerable part of the modifying zinc forms nanometric ZnO clusters inside the channels of the zeolite. The use of the low-temperature adsorption of dihydrogen as a probe indicated the appearance, after high-temperature vacuum pretreatment, of three different Lewis acid sites connected with coordinatively-unsaturated Zn2+ ions. The strongest Lewis sites, with an H-H stretching frequency of adsorbed molecular hydrogen of 3940 cm(-1), dissociatively adsorbed hydrogen, methane and propane at both room and elevated temperatures. These sites are represented either by Zn2+ ions on the walls of the main channels of the zeolite (alpha sites according to Mole et al.) or by Lewis-base pairs on the surface of nanometric clusters of zinc oxide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available