4.5 Article

Regulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.2000.278.1.L51

Keywords

secretory leukocyte proteinase inhibitor; inflammation; proteinase inhibitors

Ask authors/readers for more resources

Regulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins. Am. J. Physiol. Lung Cell. Mel. Physiol. 278: L51-L58, 2000.-Secretory leukocyte proteinase inhibitor (SLPI) is a serine proteinase inhibitor that is produced locally in the lung by cells of the submucosal bronchial glands and by nonciliated epithelial cells. Its main function appears to be the inhibition of neutrophil elastase (NE). Recently, NE was found to enhance SLPI mRNA levels while decreasing SLPI protein release in airway epithelial cells. Furthermore, glucocorticoids were shown to increase both constitutive and NE-induced SLPI mRNA levels. In addition to NE, stimulated neutrophils also release alpha-defensins. Defensins are small, antimicrobial polypeptides that are found in high concentrations in purulent secretions of patients with chronic airway inflammation. Like NE, defensins induce interleukin-8 production in airway epithelial cells. This induction is sensitive to inhibition by the glucocorticoid dexamethasone and is prevented in the presence of alpha(1)-proteinase inhibitor. The aim of the present study was to investigate the effect of defensins on the production of SLPI and the related NE inhibitor elafin/SKALP in primary bronchial epithelial cells (PBECs). Defensins significantly increase SLPI protein release by PBECs in a time- and dose-dependent fashion without affecting SLPI mRNA synthesis. In the presence of alpha(1)-proteinase inhibitor, the defensin-induced SLPI protein release is further enhanced, but no effect was observed on SLPI mRNA levels. Dexamethasone did not affect SLPI protein release from control or defens-intreated PBECs. In addition, we observed a constitutive release of elafin/SKALP by PBECs, but this was not affected by defensins. The present results suggest a role for defensins in the dynamic regulation of the antiproteinase screen in the lung at sites of inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available