4.6 Article

Evolution of Alzheimer's disease-related cytoskeletal changes in the basal nucleus of Meynert

Journal

ACTA NEUROPATHOLOGICA
Volume 100, Issue 3, Pages 259-269

Publisher

SPRINGER
DOI: 10.1007/s004019900178

Keywords

Alzheimer's disease; basal nucleus of Meynert; neuronal cytoskeleton; tau protein

Ask authors/readers for more resources

This study examines the evolution of Alzheimer's disease (AD)-related pathology in a subcortical predilection site, the basal nucleus of Meynert (bnM), which is a major source of cortical cholinergic innervation. Brains of 51 autopsy cases were studied using silver techniques and immunostaining for tau-associated neurofibrillary pathology and for amyloid beta protein (A beta) deposits. All cases are classified according to a procedure permitting differentiation of six stages of AD-related neurofibrillary changes in the cerebral cortex. Initial cytoskeletal abnormalities in the bnM are already noted in stage I of cortical neurofibrillary changes. The gradual development of the neurofibrillary pathology in the bnM parallels the progression of the AD-related stages in the cerebral cortex. A variety of morphologically distinguishable cytoskeletal alterations are observed in large nerve cells which predominate in the bnM. Based on these cellular alterations, a sequence of cytoskeletal deterioration is proposed. Initially, the abnormal tau protein is distributed diffusely throughout the cell body and the neuronal processes. Subsequently, it aggregates to form a neurofibrillary tangle, which appears as a spherical somatic inclusion. The cell processes gradually become fragmented. Finally the parent cell dies, leaving behind an extraneuronal ghost tangle. With regard to the cortical stages of AD-related neurofibrillary changes, the initial forms of cytoskeletal changes in the bnM predominate in the transentorhinal AD stages (I and II), while ghost tangles preferentially occur in the neocortical stages (V and VI). The considerable morphological diversity of cytoskeletal alterations is typical of stages III and IV. These results indicate that individual neurons of the bnM enter the sequence of cytoskeletal deterioration at different times.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available