4.4 Article

A comparison of the swelling behaviour of copolymer and interpenetrating network microgel particles

Journal

COLLOID AND POLYMER SCIENCE
Volume 278, Issue 1, Pages 74-79

Publisher

SPRINGER VERLAG
DOI: 10.1007/s003960050012

Keywords

microgel particles; interpenetrating networks; copolymer latex particles; latex swelling

Ask authors/readers for more resources

A comparison of the swelling behaviour of two types of hydrogel particles, namely, random poly[(acrylic acid)-co-(acrylamide)] [P(AAc-co-AAm)] particles and PAAc/PAAm interpenetrating network (IPN) particles, has been made using temperature and pH as the triggers. Both types of particles were synthesised by inverse microemulsion polymerisation. The conversion yield of AAc was found to be around 60 wt% due to the partition of this monomer between the aqueous and organic phases. The AAc content was thus lower in the final particles than in the initial composition. Both types of hydrogel particle exhibit an upper critical solution temperature associated with the breakage of the polymer-polymer hydrogen bonds. The maximum swelling ratio occurred in both cases at approximately equimolar AAc and AAm content of the particles. A sharper swelling transition was observed for the PAAc/PAAm IPN particles. This is because of the co-operative nature of the interactions between the PAAc and PAAm chains, the so-called zipper effect. A very much higher swelling ratio was obtained using pH as the trigger compared to using temperature. This difference in behaviour is related to the relative strengths of the forces involved in the particle swelling. Electrostatic repulsion forces, associated with the AAc dissociation with increasing pH, are much stronger than the hydrogen bonds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available