4.5 Article

Induction of matrix metalloproteinases MMP-1 and MMP-2 by co-culture of breast cancer cells and bone marrow fibroblasts

Journal

BREAST CANCER RESEARCH AND TREATMENT
Volume 63, Issue 2, Pages 105-115

Publisher

SPRINGER
DOI: 10.1023/A:1006437530169

Keywords

bone marrow fibroblasts; breast cancer; migration; matrix metalloproteinases; MMP-1; MMP-2

Categories

Ask authors/readers for more resources

Two invasive breast cancer cell lines (MDA-MB-231 and BT-549) were found to be more adherent and have greater migratory capacity on bone marrow fibroblasts than three non-invasive cell lines (MCF-7, T47D and BT-483). Antibodies to the adhesion molecules CD44, E-cadherin, ICAM-1, and integrin chains alpha2, alpha3, alpha4, alpha5, alpha6, alphav, beta1, beta3 and beta7 failed to inhibit breast cancer cell migration through bone marrow fibroblasts. Inhibitors of matrix metalloproteases, 1, 10-phenanthroline, Ro-9790, TIMP-1 and TIMP-2 were able to attenuate the migration of MDA-MB-231 cells through bone marrow fibroblast monolayers suggesting a role for these enzymes in the migration of breast cancer cells through bone marrow adherent layers. Co-culture of MDA-MB-231 cells and bone marrow fibroblasts resulted in augmentation of the levels of the matrix metalloproteases MMP-1 and MMP-2 in culture supernatants. Soluble factors produced by bone marrow fibroblasts were responsible for the increase in MMP-1 levels. However, maximal MMP-2 production was dependent on direct contract between the breast cancer cells and the bone marrow fibroblasts. Modulation of MMP production by cell-cell contact or soluble factors suggests a mechanism by which breast cancer cells can enhance their ability to invade the bone marrow microenvironment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available