4.5 Article

Weak, stochastic temporal correlation of large-scale synaptic input is a major determinant of neuronal bandwidth

Journal

NEURAL COMPUTATION
Volume 12, Issue 3, Pages 693-707

Publisher

MIT PRESS
DOI: 10.1162/089976600300015754

Keywords

-

Ask authors/readers for more resources

We determine the bandwidth of a model neurone to large-scale synaptic input by assessing the frequency response between the outputs of a two-cell simulation that share a percentage of the total synaptic input. For temporally uncorrelated inputs, a large percentage of common inputs are required before the output discharges of the two cells exhibit significant correlation. In contrast, a small percentage (5%) of the total synaptic input that involves stochastic spike trains that are weakly correlated over a broad range of frequencies exert a clear influence on the output discharge of both cells over this range of frequencies. Inputs that are weakly correlated at a single frequency induce correlation between the output discharges only at the frequency of correlation. The strength of temporal correlation required is sufficiently weak that analysis of a sample pair of input spike trains could fail to reveal the presence of correlated input. Weak temporal correlation between inputs is therefore a major determinant of the transmission to the output discharge of frequencies present in the spike discharges of presynaptic inputs, and therefore of neural bandwidth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available