4.5 Article

Effects of spike timing on winner-take-all competition in model cortical circuits

Journal

NEURAL COMPUTATION
Volume 12, Issue 1, Pages 181-194

Publisher

M I T PRESS
DOI: 10.1162/089976600300015943

Keywords

-

Ask authors/readers for more resources

Synaptic interactions in cortical circuits involve strong recurrent excitation between nearby neurons and lateral inhibition that is more widely spread. This architecture is commonly thought to promote a winner-take-all competition, in which a small fraction of neuronal responses is selected for further processing. Here I report that such a competition is remarkably sensitive to the timing of neuronal action potentials. This is shown using simulations of model neurons and synaptic connections representing a patch of cortical tissue. In the simulations, uncorrelated discharge among neuronal units results in patterns of response dominance and suppression, that is, in a winner-take-all competition. Synchronization of firing, however, prevents such competition. These results demonstrate a novel property of recurrent cortical-like circuits, suggesting that the temporal patterning of cortical activity may play an important part in selection among stimuli competing for the control of attention and motor action.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available