4.3 Article

Silica-induced cytokine release from A549 cells: importance of surface area versus size

Journal

HUMAN & EXPERIMENTAL TOXICOLOGY
Volume 20, Issue 1, Pages 46-55

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1191/096032701676225130

Keywords

silica; size; surface area; cytokines; A549 cells

Categories

Ask authors/readers for more resources

Physical and chemical properties such as structure, composition and surface reactivity determine the biological activity of mineral particles. Long-term exposure to crystalline silica is known to cause persistent pulmonary inflammation leading to adverse health effects. There is less information about the potential health effects of amorphous (noncrystalline) silica. In this study, the inflammatory and cytotoxic potency of crystalline and amorphous silica in relation to particle size and surface area was assessed. Human epithelial lung cells (A549) were exposed to different size fractions of quartz (aerodynamic diameter 0.5, 2 and 10 mum) and amorphous silica (diameter 0.3 mum). All particles induced increased release of the proinflammatory cytokines interleukin (IL)-6 and IL-8. When cells were exposed to equal masses of quartz, the smallest size fraction was the most potent. These differences, however, disappeared when cytokine release was related to equal surface areas. When amorphous silica and quartz were compared, the amorphous silica was most potent to induce IL-6 regardless of how exposure was expressed, whereas the smallest size fraction of quartz was the most potent inducer of IL-8. Thus, the surface area seems to be the critical determinant when potency of different sizes of quartz is compared.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available