4.3 Article

Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model

Journal

BIOLOGICAL CYBERNETICS
Volume 84, Issue 1, Pages 1-11

Publisher

SPRINGER-VERLAG
DOI: 10.1007/PL00007977

Keywords

-

Ask authors/readers for more resources

To emulate the actual neuro-control mechanism of human bipedal locomotion. an anatomically and physiologically based neuro-musculo-skeletal model is developed. The human musculo-skeletal system is constructed as seven rigid links in a sagittal plane, with a total of nine principal muscles. The nervous system consists of an alpha motoneuron and proprioceptors such as a muscle spindle and a Golgi tendon organ for each muscle. At the motoneurons, feedback signals from the proprioceptors are integrated with the signal induced by foot-ground contact and input from the rhythm pattern generator, a muscle activation signal is produced accordingly. Weights of connection in the neural network are optimized using a genetic algorithm, thus maximizing walking distance and minimizing energy consumption. The generated walking pattern is in remarkably good agreement with that of actual human walking, indicating that the locomotory pattern could be generated automatically, according to the musculoskeletal structures and the connections of the peripheral nervous system, particularly due to the reciprocal innervation in the muscle spindles. Using the proposed model, the flow of sensory-motor information during locomotion is estimated and a possible neuro-control mechanism is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available