4.3 Article

Corticospinal facilitation studied during voluntary contraction of human abdominal muscles

Journal

EXPERIMENTAL PHYSIOLOGY
Volume 86, Issue 1, Pages 131-136

Publisher

WILEY
DOI: 10.1113/eph8602071

Keywords

-

Categories

Ask authors/readers for more resources

Transcranial magnetic stimulation (TMS) of the human motor cortex was used to study facilitation of motor-evoked potentials (MEPs) in the rectus abdominis (RA) muscle, a trunk flexor, during voluntary activation. MEPs could be produced in the relaxed RA muscles of all six normal subjects studied. The MEPs had short latencies (18-22 ms) which are consistent with other studies suggesting a fast corticospinal input to the trunk muscles. Marked facilitation was observed in the MEPs when subjects mere asked to produce graded levels of voluntary contractions. The two tasks used to produce voluntary contractions were a forced expiration during a breath-holding task (FEBH) and bilateral trunk flexion (BTF). Maximal voluntary EMG activity during the BTF task produced around 4.2 times more integrated EMG than during the FEBH task. Similarly the MEP amplitude at MVC was 2.3 times greater during BTF than FEBH. The pattern of MEP facilitation with increasing voluntary EMG was not linear and a maximal MEP amplitude was observed at a level of voluntary contraction around 30% MVC in both tasks. There were some subtle differences in the pattern of facilitation in the two tasks. When TR IS was applied to the right cortex only, MEPs were seen in both left and right RA muscles suggesting some ipsilateral corticospinal innervation. The latency of the right (ipsilateral) response was approximately 2 ms longer than the left. Comparison with studies in hand and leg muscles suggests that the facilitation pattern in RA may reflect a substantial degree of corticospinal innervation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available