4.3 Article

Adaptive quadtree model of shallow-flow hydrodynamics

Journal

JOURNAL OF HYDRAULIC RESEARCH
Volume 39, Issue 4, Pages 413-424

Publisher

INT ASSN HYDRAULIC RESEARCH
DOI: 10.1080/00221680109499845

Keywords

-

Ask authors/readers for more resources

Natural shallow-flow domains have irregular boundaries which can strongly influence the interior flow field. Here, the nonlinear shallow water equations are solved on adaptive quadtree grids that can approximate any two-dimensional boundary topology and are easy to enrich or coarsen. A special indexing system matches the quadtree structure to conventional finite volume notation. Grid adaptation is controlled by a cell circulation parameter. Simulations of standard test flows are in close agreement with analytical and other numerical data. The sample application of wind-induced circulation in Lake Balaton, Hungary, demonstrates the ability of the model to deal with a complicated shallow-flow geometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available