4.3 Article

The applications of the enhanced CCHE2D model to study the alluvial channel migration processes

Journal

JOURNAL OF HYDRAULIC RESEARCH
Volume 39, Issue 5, Pages 469-480

Publisher

INT ASSN HYDRAULIC RESEARCH
DOI: 10.1080/00221686.2001.9628272

Keywords

-

Ask authors/readers for more resources

This paper is to report a newly developed numerical-empirical model, the Enhanced CCHED (EnCCHE21), and its application to simulating the alluvial channel migration phenomena. EnCCHE2D model is capable of predicting quasi-three-dimensional (3D) flow field and shear stress distribution on the bed, because a set of empirical functions of 3D flow characteristics formulated by results of a 3D model, CCHE3D, was integrated with CCHE2D, a depth-averaged hydrodynamic model, the predecessor of EnCCHE2D. The processes of sediment transport and meander migration were predicted based on these quasi-3D flow solutions. The advance or retreat of bank is calculated by considering not only the hydraulic erosion of bank surface and toe, but also the mass balance of sediment flux in the near-bank zone. As a result, the simulation of bank erosion, bar/pool formation and shifting, bank advance and retreat, channel widening and migration and meander evolution phenomena agree well with the available measurements of physical experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available