4.7 Article

Automatic segmentation of non-enhancing brain tumors in magnetic resonance images

Journal

ARTIFICIAL INTELLIGENCE IN MEDICINE
Volume 21, Issue 1-3, Pages 43-63

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0933-3657(00)00073-7

Keywords

MRI; non-enhancing brain tumors; image processing; automatic tissue classification; fuzzy clustering

Ask authors/readers for more resources

Tumor segmentation from magnetic resonance (MR) images may aid in tumor treatment by tracking the progress of tumor growth and/or shrinkage. In this paper we present the first automatic segmentation method which separates non-enhancing brain tumors from healthy tissues in MR images to aid in the task of tracking tumor size over time. The MR feature images used for the segmentation consist of three weighted images (T1, T2 and proton density (PD)) for each axial slice through the head. An initial segmentation is computed using an unsupervised fuzzy clustering algorithm. Then, integrated domain knowledge and image processing techniques contribute to the final tumor segmentation. They are applied under the control of a knowledge-based system. The system knowledge was acquired by training on two patient volumes (14 images). Testing has shown successful tumor segmentations on four patient volumes (31 images). Our results show that we detected all six non-enhancing brain tumors, located tumor tissue in 35 of the 36 ground truth (radiologist labeled) slices containing tumor and successfully separated tumor regions from physically connected CSF regions in all the nine slices. Quantitative measurements are promising as correspondence ratios between ground truth and segmented tumor regions ranged between 0.368 and 0.871 per volume, with percent match ranging between 0.530 and 0.909 per volume. (C) 2001 Elsevier Science B,V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available