4.3 Article

A Biomechanical Evaluation of Skull-Brain Surrogates to Blunt High-Rate Impacts to Postmortem Human Subjects

Journal

JOURNAL OF FORENSIC SCIENCES
Volume 60, Issue 2, Pages 370-373

Publisher

WILEY
DOI: 10.1111/1556-4029.12693

Keywords

forensic science; blunt trauma; ballistics; skull fracture; head impact; skull model; head injury

Ask authors/readers for more resources

The field of forensic injury biomechanics is an emerging field. Biomechanically validated tools may assist interdisciplinary teams of investigators in assessing mechanisms of blunt head trauma resulting in skull fractures. The objective of this study is to assess the biofidelity of spherical, frangible skull-brain (SB) surrogates. Blunt impacts were conducted at 20m/s, using an instrumented 103g rigid impactor, to the temporo-parietal region of four defleshed cephalic postmortem human subjects (PMHS). Force-deformation response, fracture tolerance, and fracture patterns were recorded for comparison to spherical skull-brain surrogates. Three brain substitutes were assessed: 10% gelatin, lead shot with Styrofoam and water. Force-deformation response of the skull-brain surrogates was similar to defleshed PMHS up to the point of fracture; however, none of the surrogates fractured at tolerance levels comparable to the PMHS. Fracture patterns of the skull-brain surrogates were linear and radiating, while PMHS fractures were all depressed, comminuted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available