4.4 Article

Ephemeral grounding as a signal of ice-shelf change

Journal

JOURNAL OF GLACIOLOGY
Volume 47, Issue 156, Pages 71-77

Publisher

INT GLACIOL SOC
DOI: 10.3189/172756501781832502

Keywords

-

Ask authors/readers for more resources

Interferometric synthetic aperture radar (InSAR) observations of ice-shelf tidal deformation reveal the wide transition between grounded and floating ice as well as local areas where the ice shelf is only grounded at low tide, a condition that we call ephemeral grounding. Ephemeral grounding creates a subtle, local disturbance on the vertical motion field of the ice-shelf surface in response to changes in oceanic tide which is detected with millimetric precision using InSAR. These ice-shelf features are, however, not expected to produce a noticeable disturbance on the ice-shelf velocity field. To illustrate the influence of ephemeral grounding on ice-shelf creep flow, we use a finite-element model in which ephemeral grounding is incorporated through a variable basal friction coefficient. The results show that while ice rises (permanently grounded areas) have a pronounced influence on the ice-shelf velocity field, areas of ephemeral grounding have a vanishingly small influence. What is thus of most interest is the capacity for observations of ephemeral grounding to reveal subtle changes in ice-shelf thickness over time. We discuss an example in the Thwaites Glacier area, West Antarctica, where multi-year data show how ice rises become ephemeral grounding and subsequently disappear. This result is consistent with the grounding-line retreat and ice thinning of Thwaites Glacier.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available