4.6 Article

Disordered Mesoporous TiO2-xNx+Nano-Au: An Electronically Integrated Nanocomposite for Solar H2 Generation

Journal

CHEMCATCHEM
Volume 6, Issue 2, Pages 522-530

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201300715

Keywords

heterogeneous catalysis; hydrogen; mesoporous materials; photochemistry; water splitting

Funding

  1. CSIR, New Delhi
  2. CSIR, New Delhi [NWP0056]
  3. CSISR [CSC-0404]

Ask authors/readers for more resources

We report on H-2 generation by photocatalysis driven by simulated white light by electronically integrated Au nanoparticles with multifunctional, disordered mesoporous TiO2-xNx (Au-NT) nanocomposites. Solar H-2 generation (1.5 mmolh(-1)g(-1)) from aqueous methanol has been demonstrated with Au-NT nanocomposites. The water splitting activity of Au-NT is attributed to the 21.1 ps lifetime of charge carriers observed from fluorescence lifetime measurements, which indicates a high electron-injection efficiency from nano-Au to the conduction band of TiO2, and hence charge separation as well as utilization. This is directly supported by the observation of a high photoluminescence emission intensity with Au-NT that highlights the energy transfer from nano-Au to TiO2. The p-n heterojunction observed between the Au (001) and TiO2 (101) facets helps to-wards the higher charge separation and their utilization. A low mesochannel depth (< 10 nm) associated with disordered mesoporous TiO2-xNx helps the charge carriers to move towards the surface for redox reactions and hence charge utilization. Visible-light absorption, as a result of the surface plasmon resonance of nano-Au, is observed in a broad range between 500 and 750 nm, which helps in harvesting visible-light photons. Finally, electronically integrated nano-Au with TiO2-xNx in Au-NT is evident from Raman and X-ray photoelectron spectroscopy measurements. All of these factors help to achieve a high rate of H-2 production. It is likely that a higher rate of H-2 production than that reported here is feasible by strategically locating Au clusters in porous TiO2 to generate hot spots through electronic integration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available