4.7 Article

Neural network based prediction of ground surface settlements due to tunnelling

Journal

COMPUTERS AND GEOTECHNICS
Volume 28, Issue 6-7, Pages 517-547

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0266-352X(01)00011-8

Keywords

ground movements; maximum surface settlement; inflection point; artificial neural network; tunnelling

Ask authors/readers for more resources

Ground surface settlement due to tunnel excavation varies in magnitude and trend depending on several factors such as tunnel geometry, ground conditions, etc. Although there are several empirical and semi-empirical formulae available for predicting ground surface settlement, most of these do not simultaneously take into consideration all the relevant factors, resulting in inaccurate predictions. In this study, an artificial neural network (ANN) is incorporated with '113' of monitored field results to predict surface settlement for a tunnel site with prescribed conditions. To achieve this, a standard format (a protocol) for a database of monitored field data is first proposed and then used for sorting out a variety of monitored data sets available in KICT. Using the capabilities of pattern recognition and memorization of the. ANN, an attempt is made to capture the rich physical characteristics smeared in the database and at the same time filter inherent noise in the monitored data. Here, an optimal neural network model is suggested through preliminary parametric studies. It is shown that preliminary studies for generating an optimal ANN under given training data sets are necessary because no analytical method for this purpose is available to date. In addition, this study introduces a concept of relative strength of effects (RSE) [Yang Y, Zhang Q. A heirarchical analysis for rock engineering using artificial neural networks. Rock Mechanics and Rock Engineering 1997; 30(4): 207-22] in sensitivity analysis for various major factors affecting the surface settlement in tunnelling. It is seen in some examples that the RSE rationally enables us to recognize the most significant factors of all the contributing factors. Two verification examples are undertaken with the trained ANN using the database created in this study. It is shown from the examples that the ANN has adequately recognized the characteristics of the monitored data sets retaining a generality for further prediction. It is believed that an ANN based hierarchical prediction procedure shown in this paper can be further employed in many kinds of geotechnical engineering problems with inherent uncertainties and imperfections. (C) 2001 Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available