3.8 Article Proceedings Paper

Cellular osmoregulation: beyond ion transport and cell volume

Journal

ZOOLOGY-ANALYSIS OF COMPLEX SYSTEMS
Volume 104, Issue 3-4, Pages 198-208

Publisher

ELSEVIER GMBH
DOI: 10.1078/0944-2006-00025

Keywords

osmoregulation; signal transduction; protein phosphorylation; DNA damage; DNA repair

Categories

Ask authors/readers for more resources

All cells are characterized by the expression of osmoregulatory mechanisms, although the degree of this expression is highly variable in different cell types even within a single organism, Cellular osmoregulatory mechanisms constitute a conserved set of adaptations that offset antagonistic effects of altered extracellular osmolality/environmental salinity on cell integrity and function. Cellular osmoregulation includes the regulation of cell volume and ion transport but it does not stop there, We know that organic osmolyte concentration, protein structure, call turnover, and other cellular parameters are osmoregulated as well. In this brief review two important aspects of cellular osmoregulation are emphasized: 1) maintenance of genomic integrity, and 2) the central role of protein phosphorylation. Novel insight into these two aspects of cellular osmoregulation is illustrated based on two cell models, mammalian kidney inner medullary cells and teleost gill epithelial cells. Both cell types are highly hypertonicity stress-resistant and, therefore, well suited for the investigation of osmoregulatory mechanisms. Damage to the genome is discussed as a newly discovered aspect of hypertonic threat to cells and recent insights on how mammalian kidney cells deal with such threat are presented. Furthermore, the importance of protein phosphorylation as a core mechanism of osmosensory signal transduction is emphasized. In this regard, the potential roles of the 14-3-3 family of phospho-protein adaptor molecules for cellular osmoregulation are highlighted primarily based on work with fish gill epithelial cells. These examples were chosen for the reader to appreciate the numerous and highly specific interactions between stressor-specific and non-specific pathways that form an extensive cellular signaling network giving rise to adaptive compensation of hypertonicity. Furthermore, the example of 14-3-3 proteins illustrates that a single protein may participate in several pathways that are non-specific with regard to the type of stress and, at the same time, in stress-specific pathways to promote cell integrity and function during hypertonicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available