4.6 Review

Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods

Journal

CHEMCATCHEM
Volume 2, Issue 7, Pages 762-782

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201000069

Keywords

biocatalysis; cofactors; oxidation; oxidoreductases; reduction

Ask authors/readers for more resources

Redox enzymes have tremendous potential as catalysts for preparative organic chemistry. Their usually high selectivity, paired with their catalytic efficiency under mild reaction conditions, makes them potentially very valuable tools for synthesis. The number of interesting monooxygenases, dehydrogenases, reductases, oxidases, and peroxidases is steadily increasing and the tailoring of a given biocatalyst is more and more becoming standard technology. However, their cofactor dependency still represents a major impediment en route to true preparative applicability. Currently, three different approaches to deal with this 'cofactor challenge' are being pursued: using whole cells, biomimetic approaches comprising enzymatic cofactor regenerations systems, and 'unconventional' nonenzymatic regeneration. The latter technique offers the promise of enabling simple, easily applicable, and robust reaction schemes, for example, by circumventing the 'cofactor challenge' and introducing redox power directly to the enzyme's active sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available