4.7 Article

Solution properties of celluloses from different biological origins in LiCl center dot DMAc

Journal

CELLULOSE
Volume 8, Issue 4, Pages 275-282

Publisher

SPRINGER
DOI: 10.1023/A:1015162027350

Keywords

bacterial cellulose; cellulose; liquid crystal; rheological property; viscosity

Ask authors/readers for more resources

Differences in the solution properties of cellulose in 8% LiCl . DMAc (dimethyl acetamide) were investigated using celluloses from different origins. The latter included plants (dissolving pulp (DP), cotton linters (CC), and kraft pulp), bacteria (Acetobacter xylinum, BC), and marine animals (tunicin from Halocynthia). The celluloses from plants and bacteria formed LiCl . DMAc solutions that were isotropic and anisotropic, respectively; and the animal cellulose was insoluble. The weight average molecular weights, M-w, of DP, CC and BC were found to be 98.2 x 10(4), 170 x 10(4) and 192 x 10(4), respectively. The solution viscosities were proportional to c(<)alpha> (c; polymer concentration) in the dilute and semi-dilute regions, where the exponent alpha was 1 for all samples in the dilute region; in the semi-dilute region, it was 4 for the DP and CC solutions and 3 for the BC solution. Molecular weight differences were compensated by plotting the viscosity against cM(w) or c[eta] (where [eta] is the limiting viscosity number). The difference in viscosity behavior at elevated solution concentration indicates that the cellulose molecules from DP and CC behave as flexible polymer chains and those of BC as rod-like ones. These results suggest that differences in molecular structure and properties exist between celluloses from different sources, and that these differences relate to the mechanism or the type of the intermolecular interaction between the celluloses of plants (DP and CC) and those of bacteria (BC).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available