4.1 Article

Effects of land-surface heterogeneity upon surface fluxes and turbulent conditions

Journal

METEOROLOGY AND ATMOSPHERIC PHYSICS
Volume 78, Issue 3-4, Pages 157-181

Publisher

SPRINGER WIEN
DOI: 10.1007/s703-001-8171-3

Keywords

-

Ask authors/readers for more resources

In this paper, we examine the effects of land-surface heterogeneity on the calculation of surface-energy and momentum fluxes in a meso-scale atmospheric model. A series of numerical experiments has been carried out with a combination of different resolutions for the atmosphere and the land surface, which allows an examination of the aggregation and dynamic effects associated with land-surface heterogeneity. The numerical results show that for a given atmospheric model resolution, increased land-surface resolution leads to better estimates of surface-energy and momentum fluxes, and for a given land-surface resolution, increased atmospheric model resolution also improves the estimates of these fluxes. This latter result contradicts the prevailing view that subgrid variation in atmospheric data plays only a minor role in estimating the fluxes. It is also shown that subgrid land-surface heterogeneity leads to increased turbulent fluctuations. The responsible mechanisms of this effect are both the subgrid variation of surface-energy fluxes and their impact upon the development of convective cells. It is suggested that subgrid atmospheric motions induced by surface heterogeneity may be an important factor which needs to be considered in subgrid closure schemes for atmospheric models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available