4.4 Article

Biophysical Studies of the Amyloid β-Peptide: Interactions with Metal Ions and Small Molecules

Journal

CHEMBIOCHEM
Volume 14, Issue 14, Pages 1692-1704

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.201300262

Keywords

aggregation; Alzheimer's disease; amyloid beta-peptides; protein aggregation; protein-ligand binding

Funding

  1. Swedish Research Council
  2. Brain Foundation
  3. Alzheimer Foundation
  4. Magnus Bergvall Foundation
  5. Estonian Ministry of Education and Research

Ask authors/readers for more resources

Alzheimer's disease is the most common of the protein misfolding (amyloid) diseases. The deposits in the brains of afflicted patients contain as a major fraction an aggregated insoluble form of the so-called amyloid beta-peptides (A beta peptides): fragments of the amyloid precursor protein of 39-43 residues in length. This review focuses on biophysical studies of the A beta peptides: that is, of the aggregation pathways and intermediates observed during aggregation, of the molecular structures observed along these pathways, and of the interactions of A beta with Cu and Zn ions and with small molecules that modify the aggregation pathways. Particular emphasis is placed on studies based on high-resolution and solid-state NMR methods. Theoretical studies relating to the interactions are also included. An emerging picture is that of A beta peptides in aqueous solution undergoing hydrophobic collapse together with identical partners. There then follows a relatively slow process leading to more ordered secondary and tertiary (quaternary) structures in the growing aggregates. These aggregates eventually assemble into elongated fibrils visible by electron microscopy. Small molecules or metal ions that interfere with the aggregation processes give rise to a variety of aggregation products that may be studied in vitro and considered in relation to observations in cell cultures or in vivo. Although the heterogeneous nature of the processes makes detailed structural studies difficult, knowledge and understanding of the underlying physical chemistry might provide a basis for future therapeutic strategies against the disease. A final part of the review deals with the interactions that may occur between the A beta peptides and the prion protein, where the latter is involved in other protein misfolding diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available